Cross-domain recommendation without shared users or items by sharing latent vector distributions
نویسندگان
چکیده
We propose a cross-domain recommendation method for predicting the ratings of items in different domains, where neither users nor items are shared across domains. The proposed method is based on matrix factorization, which learns a latent vector for each user and each item. Matrix factorization techniques for a single-domain fail in the cross-domain recommendation task because the learned latent vectors are not aligned over different domains. The proposed method assumes that latent vectors in different domains are generated from a common Gaussian distribution with a full covariance matrix. By inferring the mean and covariance of the common Gaussian from given crossdomain rating matrices, the latent factors are aligned, which enables us to predict ratings in different domains. Experiments conducted on rating datasets from a wide variety of domains, e.g., movie, books and electronics, demonstrate that the proposed method achieves higher performance for predicting cross-domain ratings than existing methods.
منابع مشابه
Cross-Domain Recommendation via Cluster-Level Latent Factor Model
Recommender systems always aim to provide recommendations for a user based on historical ratings collected from a single domain (e.g., movies or books) only, which may suffer from the data sparsity problem. Recently, several recommendation models have been proposed to transfer knowledge by pooling together the rating data from multiple domains to alleviate the sparsity problem, which typically ...
متن کاملCross-Domain Matrix Factorization for Multiple Implicit-Feedback Domains
Cross-domain recommender systems represent an emerging research topic as users generally have interactions with items from multiple domains. One goal of a cross-domain recommender system is to improve the quality of recommendations in a target domain by using user preference information from other source domains. We observe that, in many applications, users interact with items of different type...
متن کاملMulti Cross Domain Recommendation Using Item Embedding and Canonical Correlation Analysis
In a multi-service environment it is crucial to be able to leverage user behavior from one or more domains to create personalized recommendations in the other domain. In our paper, we present a robust transfer learning approach that successfully captures user behavior across multiple domains. First, we vectorize users and items in each domain independently. Second, using a handful of common use...
متن کاملImproving Topic Diversity in Recommendation Lists: Marginally or Proportionally?
Diversifying the recommendation lists in recommendation systems could potentially satisfy user’s needs. Most diversification techniques are designed to recommend the top-k relevant and diverse items, which take the coverage of the user preferences into account. The relevance scores are usually estimated by methods such as latent matrix factorization. While in this paper, we model the users’ int...
متن کاملCoevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions
Matching users to the right items at the right time is a fundamental task in recommendation systems. As users interact with different items over time, users’ and items’ feature may evolve and co-evolve over time. Traditional models based on static latent features or discretizing time into epochs can become ineffective for capturing the fine-grained temporal dynamics in the user-item interaction...
متن کامل